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An experimental investigation of electrokinetic instabilities (EKIs) of non-dilute
colloidal suspensions in microchannels is presented. The addition of charged colloidal
particles to a solution can alter the solution’s electrical conductivity and permittivity
as well as the average particle electrophoretic mobility. In this work, a colloidal
(500 nm polystyrene) volume fraction gradient is achieved at the intersection of a
Y-shaped polydimethylsiloxane (PDMS) microchannel. The flow becomes unstable
when the electroviscous stretching and folding of the conductivity and permittivity
interfaces exceed the dissipative effects of viscous forces and particle diffusion. The
suspension conductivity as a function of the particle volume fraction is presented.
The critical conditions required for flow instability are measured along with a
scaling analysis which shows that the flow becomes unstable due to a coupling
of applied electric fields and the electrical conductivity and permittivity gradients
in the flow. The flow becomes unstable at a critical electric Rayleigh number of
Rae =1.8 × 105 for a wide range of applied electric fields spanning three orders of
magnitude and colloid volume fractions varying two orders of magnitude. EKIs
of non-dilute colloidal suspensions may be important for applications such as the
electrophoretic deposition of micropatterned colloidal assemblies, electrorheological
devices and on-chip electrokinetic (EK) manipulation of colloids.

1. Introduction
The transport of non-dilute colloidal suspensions under externally applied electric

fields are important in a number of applications such as electrorheology (see Ikazaki
et al. 1998; Espin, Delgado & Rejon 2005), field-induced pattern formations in
colloidal dispersions (see Trau et al. 1995; Whitesides & Grzybowski 2002), field-
induced layering of colloidal crystals films, patterned microarrays (see Trau, Saville &
Aksay 1996; Hayward, Saville & Aksay 2000), electronic chip cooling (see Jang &
Choi 2006) and field-induced separations, viz. field-induced flow fractionation and
dielectrophoresis systems. In addition, recent work in microfluidic and nanofluidic
systems have focused on the electrokinetic injection, separation, concentration and
mixing of charged particles or analytes, where non-dilute volume fractions of charged
species may be encountered locally (see Stone & Kim 2001; Bazant & Squires 2004).

Electrokinetics is a branch of electrohydrodynamics that describes the transport of
ions, fluid flow and their interactions with electric fields and is distinguished from
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electrohydrodynamics by the presence of charges at the interface of the solid–liquid
boundaries (see Saville 1997). Two important classes of electrokinetic (EK) flow are
electrophoresis and electro-osmosis, wherein the motion of charge stabilized colloidal
particles and fluids, respectively, occurs when an external electric field is applied to
the system (see Probstein 1994). EK flows in microscale channels and around charged
particles are strongly damped by viscous forces and typically laminar with Reynolds
numbers less than unity.

It has been shown that flows with electric fields coupled with gradients in ionic
conductivity can, under certain conditions, become unstable. These instabilities were
first observed by Melcher in the late 1960s (see Melcher & Taylor 1969). Hoburg
& Melcher (1976) performed experiments in dielectric liquids (corn oil) in which
they applied an electric field transverse to the conductivity gradients, which always
resulted in electrohydrodynamic (EHD) instabilities. More recently, there has been
interest in electric-field-induced instabilities in microchannels, in part due to the
importance of electric-field-driven transport in micro total analytical system (μTAS)
devices (see Chen et al. 2005; Ozen et al. 2006; Posner & Santiago 2006). Much of
the recent work has focused on EK instabilities (EKIs) in microscale channels which
use miscible, high-ionic-conductivity electrolyte solutions in which ion diffusion is
important. EK instabilities are distinguished from EHD instabilities by the importance
of the smearing of conductivity interfaces by ionic diffusion, the role of electro-
osmotic (EO) flow in advection and the conditional instability that depends on
the electric field and conductivity gradient magnitude. Baygent & Baldessari (1998)
were the first to consider the diffusion of ions in a linear stability analysis and
predicted conditionally unstable flows at relatively high electric Rayleigh numbers.
Oddy, Santiago & Mikkelsen (2001) showed that EKIs could be used to rapidly mix
fluids in microscale channels using AC fields. Lin et al. (2004) provided a modified
ohmic model that can be applied to the study of EKIs with a symmetric binary
electrolyte and explored the instability physics using detailed two-dimensional and
three-dimensional numerical simulations. Storey et al. (2005) studied EKIs in shallow
microchannels and showed that the presence of closer channel walls had a stabilizing
effect on the instabilities. Chen et al. (2005) observed the formation of coherent,
wave-like flow structures at the intersection of a microfluidic T-junction using DC
applied fields and presented a linear stability analysis on the governing equations
to predict the onset of absolutely unstable and convectively unstable modes of
instabilities. Oddy & Santiago (2005) extended the instability analysis in symmetric
ion electrolytes of Lin et al. (2004), Storey et al. (2005) and Chen et al. (2005)
to asymmetric ion mobility electrolytes and predicted that the instability would be
observed at lower applied fields than for symmetric electrolytes. Posner & Santiago
(2006) observed EKIs in cross-shaped microchannels and characterized the critical
electric fields required for instability as a function of the conductivity ratio and
stream widths using quantitative scalar imaging. They developed an electric Rayleigh
number scaling relationship and showed that the flow becomes unstable at a local
critical electric Rayleigh number of Rae,l = 205 over three orders of magnitude of
conductivity ratios and stream widths. In the same paper, Posner and Santiago
showed scalar power spectrums that exhibit symmetry breaking, bifurcations and
continuous power spectrums consistent with highly chaotic flows. These studies
collectively provide a fundamental understanding of EKIs, an identification of
key controlling parameters, predictive numerical simulations, a description of the
critical conditions required for instability and the observation of nonlinear flow
patterns.
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Existing EKI studies have thus far focused on instabilities in aqueous solutions
with mismatched ionic conductivities due to addition of dissolved salts. In this
work, we describe instabilities that occur due to gradients in both electrical
conductivity and permittivity due to gradients in the volume fraction of micron-scale
(500 nm) polystyrene colloidal suspensions with homogeneous background electrolyte
solutions. The presence of charge-stabilized colloids can alter the bulk conductivity
and permittivity of the solution to which they are added (see Zukoski & Saville 1985).
Trau et al. (1995) showed that electric fields can be used to induce deformation in a
non-dilute colloidal bolus in dielectric mediums, but to our knowledge, the current
work represents the first observation of EKIs of non-dilute colloidal suspensions
in aqueous electrolyte solutions. Our work in electrolyte solutions is distinguished
from the Trau et al. (1995) study of dielectric liquids (castor oil) in that electrolyte
solutions are highly polarizable and electrically conductive, and particles dispersed
in such electrolytes have definable electric double layers (EDLs). We also distinguish
our study of unsteady flows in colloidal dispersions with DC fields from steady AC
electrothermal flows, which result from thermally induced gradients of conductivity
and permittivity (see Sigurdson, Wang & Meinhart 2005).

Our study of instabilities in colloidal suspensions is conducted in Y-shaped
polydimethylsiloxane (PDMS) microchannels with pressure- and electric-field-driven
flows. We measure the modification of the bulk solution conductivity and particle
mobility as a function of the particle volume fraction and show that the critical
electric field required for instability is a function of the particle volume fraction φ. We
develop a scaling relation for the electric body forces developed in the bulk fluid as a
function of the charge density that forms due to a coupling of the conductivity and
permittivity gradients with the electric field. We show that these colloidal suspensions
become unstable at a critical electric Rayleigh number Rae,crit = 1.8 ×105 over two
orders of magnitude of the particle volume fraction (φ = 0.0001–0.025).

The paper is organized as follows: in § 2 we analyse the variations in the critical
parameters of our study, viz. electrical conductivity, electrophoretic mobility, electrical
permittivity and the dynamic viscosity of colloidal suspensions; in § 3 we describe the
flow field conditions and the related physical parameters of our experimental system;
in § 4 we derive a scaling relation for the electric Rayleigh number that accounts
for the variations in the conductivity and permittivity gradients in the flow; in § 5
we describe our experimental set-up, colloidal chemistry, microfabrication of PDMS
devices, imaging system and the techniques used to reduce the raw scalar images; in § 6
we present quantitative results reduced from the scalar images and compare the scaling
relation with our experimental results. The paper concludes in § 7 with a summary.

2. Variation of suspension properties
In this section we discuss the modification of the bulk solution properties, namely

the electrical conductivity, permittivity, viscosity and density as well as the average
particle electrophoretic mobility as a function of the particle volume fraction.

2.1. Variation of the suspension electrical conductivity

When a charged particle is added to an aqueous electrolyte solution, the conductivity
of the solution can increase or decrease depending upon the concentration of the
ions in the background electrolyte. A charged sphere dispersed in an electrolyte forms
an EDL whose thickness is characterized by its Debye length λd (see Hunter 1981).
When an electric field is applied, the mobile ions in the diffuse layer of the EDL
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electromigrate and generate an ionic surface conductance effect that can modify the
net electrical conductivity of the solution. In a low-ionic-strength electrolyte, the
ionic conductivity in the EDL is greater than that in the bulk solution so that
the surface conductance results in an increase in the effective electrical conductivity
of the suspension. In contrast, in high-ionic-strength electrolytes, the effect of surface
conductance is not appreciable and the particle displaces a volume of solution
containing ions that results in a net decrease in the effective electrical conductivity of
the suspension. This effect can be captured by the Dukhin number Du (see Dukhin
1993). The Dukhin number, Du, is the ratio of the surface conductivity to the bulk
conductivity of the solution. Thus, it follows that Du is higher for particles dispersed in
low-ionic-strength solutions and vice versa. The electrical conductivity modification
increases with the particle volume fraction φ (see Zukoski & Saville 1985). For a
given particle volume fraction φ, the bulk conductivity of the suspension increases
with decreasing EK radius κa (where κ is the inverse Debye layer thickness (1/λd)
and a is the radius of the particle) due to relatively larger EDLs (see Zukoski &
Saville 1985).

When dielectric particles with low surface charge (or low Du conditions) are
added to an electrolyte, the suspension’s effective electrical conductivity decreases
with increasing volume fraction. This can be described using Maxwell’s mean field
theory (see Maxwell 1873) and has also been predicted analytically (see Jeffrey
1973; McKenzie, McPhedran & Derrick 1978; Sangani & Acrivos 1983). Watillon &
Stone-Masui (1972) measured the surface conductance of 70 nm and 56 nm
monodisperse polystyrene latex spheres with volume fractions ranging from 0.003
to 0.010 in perchloric acid solutions. Following this, Dukhin & Derjaguin (1974)
extended Smoluchowski’s (1918) seminal analysis of EK theory by deriving a relation
for the effective electrical conductivity of a dilute suspension of charged particles
assuming low zeta potentials (Debye–Huckel approximation) and thin EDLs, while
taking into account the distortion of the electric double layer. Saville (1979) and
Obrien (1981) predicted the electrical conductivity of suspensions in a symmetric
electrolyte for particles with low zeta potential ζ p and thin EDLs. Obrien (1983)
then extended the symmetric electrolyte assumptions of Saville and Dukhin to a
general electrolyte case with the limiting case of thin EDLs, uniform zeta potential
and immobile stern layer ions. Zukoski & Saville (1985) experimentally measured the
particle electrophoretic mobility and suspension electrical conductivity of two different
polystyrene latex spheres as functions of volume fraction (0 <φ < 0.025) and used
numerical approximations of the EK theory to calculate the zeta potential of particles
from these two different measurements. From their analysis, they observed that the
values of zeta potentials obtained by these two measurements were substantially
different. They attribute this difference in zeta potentials to the transport processes
occurring within the stern layer which is not accounted for by the EK theory. Their
results indicate that the effective electric conductivity increases with the addition of
particles for κa < 19.1 and it decreases for κa > 26.9. Zukoski & Saville (1987) also
measured the electrophoretic mobility and electrical conductivity in a concentrated
homogeneous suspension of human erythrocytes with thin EDL assumptions. They
confirmed that the bulk conductivity decreases with volume fraction as long as the
surface conductance of the particles is much less than that of the solvent medium
as suggested by previous analytical predictions (see Jeffrey 1973; McKenzie et al.
1978; Sangani & Acrivos 1983). Levine & Neale (1974) and Levine, Neale & Epstein
(1976) were the first to employ the Kuwabara’s unit cell model (see Kuwabara
1959) method for predicting the electrophoretic mobility and electrical conductivity
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of dilute suspensions of particles with low zeta potentials. In recent years, several
different groups have obtained numerical and analytical expressions taking into
account all possible factors, such as, distortion of the double layer, general electrolyte
(see Ohshima 1999, 2000), particle–particle interactions (see Johnson & Davis 1999),
EDL polarization (see Lee, Chih & Hsu 2001; Keh & Hsu 2002), thick double layers
(see Kozak & Davis 1989; Ding & Keh 2001; Carrique, Arroyo & Delgado 2002),
overlapping EDLs (see Carrique et al. 2003b) and dynamic stern layer models (see
Voegtli & Zukoski 1991; Carrique, Arroyo & Delgado 2001). There are relatively few
experimental studies that measure the electrical conductivity modification of colloidal
suspensions and inspite of all the theoretical formulations that have been developed
so far, there is no accurate method to predict the variation of electric conductivity of
suspensions with volume fraction of particles with thick EDLs, κa < 1 (see Ding &
Keh 2001).

2.2. Variation of suspension permittivity

Electrical permittivity describes a material’s ability to polarize in response to an
externally applied electric field. Permittivity is a function of the frequency ε∗(ω) (F m−1)
of the externally applied field, as given by the relation ε∗(ω) = ε∗

r (ω)ε0, where ε∗
r (ω)

denotes the complex dielectric constant of the medium and εo is the permittivity
of free space. The value of the permittivity of a medium at zero frequency (DC)
is called its static permittivity or simply the dielectric constant of the medium εrm.
The addition of charged particles to an aqueous solution changes the permittivity
of the medium in which they are dispersed. When dealing with a heterogeneous
suspension of particles, the electrical permittivity is defined as the value of a sample
of homogeneous material that has the same resistance and capacitance as those
of the suspension. Many methods have been adopted by researchers to study the
frequency dependence of permittivity of colloidal suspensions (see Gregory & Clarke
2005; Ahualli et al. 2006). Dielectric spectroscopy (sometimes called low-frequency
dielectric dispersion) is one of the most common methods used to study the frequency
dependence of the complex permittivity of a suspension in the frequency range
of 0.1 kHz to 1 MHz (see Rosen & Saville 1991; Hollingsworth & Saville 2004).
However, in the current work, we are primarily interested in the variation of the
static permittivity of the particle suspensions. Gregory & Clarke (2005) developed
a shielded micrometre-driven, parallel-plate admittance cell device for measuring the
permittivity of liquids in the frequency range of 0.1–1 mHz and 5◦–50◦C temperature
range. The permittivity in this case was obtained by measuring the capacitance of
the cell filled with the homogeneous liquid sample. They suggested in their paper
that such methods are suited only for measuring the capacitances of homogeneous
sample liquids due to the problems of fringing fields and stray capacitances that may
be associated with heterogeneous samples such as particle suspensions.

The most widely known mechanism of dielectric dispersion that describes the
polarization of a heterogeneous material is the Maxwell–Wagner (MW) relation.
O’Konski (1960) extended the MW theory to account for the surface conductance
effects of particles. Bonincontro, Cametti & Biasio (1980) included the effect of space
charge distribution around the dispersed particles which had not been captured by
the MW theory by inclusion of a correction factor that is applicable over a wide range
of κa and permittivity ratios εp/εm. They suggested that correction factors need to
be applied to the MW theory to predict the static dielectric constants of suspensions
under conditions of small κa � 10 and higher permittivity ratios, εp/εm � 1.
Carrique and colleagues (2003a) developed a theory for the variations in the static
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permittivity of suspensions with volume fractions up to 50%, using Kuwabara’s cell
model. Their theory accounts for the interparticle interactions and overlapping EDLs
and suggests that the dielectric constant of the suspension is a function of κa and
particle zeta potential (see Carrique et al. 2003a). They show that the static dielectric
constant of the suspension εrs (0) as a function of volume fraction typically has a
maximum and then decreases contrary to the monotonic decrease predicted by the
Maxwell–Wagner–O’Konski relation. In § 6.5, we use Carrique’s model to predict
the relative importance of the permittivity in the instability as a function of the
particle volume fraction and the background solution concentration (see Carrique
et al. 2003a).

To our best knowledge, there is no published data with measurements of the
variation in the static permittivity of polystyrene particle suspensions in aqueous
solutions as a function of the volume fraction. Dielectric spectroscopy, admittance
cell measurement techniques have difficulties measuring the static permittivity, in part
due to interference by electrode polarization (see Kijlstra, Vanleeuwen & Lyklema
1993; Tirado et al. 2000; Gregory & Clarke 2005; Ahualli et al. 2006) and also due
to their applicability to heterogeneous samples.

2.3. Variation of particle electrophoretic mobility

The electrophoretic mobility μ of a charged particle is often expressed in terms of the
particle zeta potential ζp by Henry’s relation. The particle zeta potential varies with
the ionic strength and pH of the background electrolyte (see Kirby & Hasselbrink
2004a,b) as well as the particle volume fraction of the suspension (see Hunter 1981).
Huckel (1924) first developed an expression for the electrophoretic mobility of a
particle in an electric field as a function of the zeta potential of the particle, the
fluid permittivity and viscosity of thick EDLs. Henry (1931) extended this theory to
consider arbitrary EDL thicknesses and showed that the mobility expression translates
to the Smoluchowski’s (1918) and Huckel’s (1924) equations at thin and thick EDL
conditions respectively. In their theories, Henry and Huckel assumed that the EDL is
undistorted and unpolarized and that the dispersed particles have low zeta potentials.
Overbeek (1950) and Booth (1950) considered distortion of the EDL for moderate
values of κa (0.2 < κa <50). Wiersema, Loeb & Overbeek (1996) accounted for the
relaxation effects of the EDL with the assumptions of no interparticle interactions,
immobile ions in the stern layer, low zeta potential and unpolarized EDL.

The above work (Wiersema, Loeb & Overbeek 1996) primarily focused on the
mobility of a single particle in an infinite medium. In a colloidal suspension there are
many particles that result in the modification of the mobility due to interparticle
interactions. Levine & Neale (1974) were the first to account for the effects
of interaction between spherical particles in a colloidal suspension. Approximate
analytical expressions for the electrophoretic mobility of dilute suspensions of colloidal
spheres in symmetric electrolytes were obtained by Ohshima, Healy & White (1983),
which matched well with the numerical simulations of Obrien and White (1978).
Several other researchers have also used the dynamic stern layer model of Zukoski
& Saville (1985, 1986) to model the variation of electrophoretic mobility with the
volume fraction of particles (see Mangelsdorf & White 1990; Kijlstra et al. 1992;
Arroyo et al. 1999; Carrique et al. 2001).

The variation of electrophoretic mobility with volume fraction has been measured
in concentrated suspensions of homogeneous (see Zukoski & Saville 1987) and
heterogeneous (see Zukoski & Saville 1989) erythrocyte suspensions. They showed
that the mobility ratio varies as μ/μo = (1 − kφ), where k is a constant between 0.97
and 1.15 and μo represents the mobility at infinite suspension dilution. More recently,
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Perez & Lemaire (2004) measured the electrophoretic mobility of poly(methyl
methacrylate) (PMMA) particles dispersed in liquid hydrocarbons and showed
that the experimental theory of mobility ratio put forward by Zukoski & Saville
(1987, 1989) is also applicable to particles in non-aqueous mediums. We also
performed experiments to characterize the variation of the average electrophoretic
mobility of the polystyrene particles with volume fraction using micron-scale particle
image velocimetry (μPIV) technique. The set-up, procedure and results from these
measurements are given in § 5.2 of this paper.

2.4. Variation of solution viscosity and density

The bulk viscosity is also modified with the colloidal volume fraction. Numerous
experimental and theoretical investigations have been carried out to relate the viscosity
of colloidal suspensions with the volume fraction of particles (see Guth & Gold 1938;
Simha 1940; Vand 1948; Mooney 1951; Krieger & Dougherty 1959; Batchelor 1977;
de Kruif et al. 1986). Here, we use a maximum volume fraction of φ = 0.025 which
remains dispersed in the medium and is distinct from colloidal gels and glasses that
can result in non-Newtonian shear thickening and thinning (see Russel, Saville &
Schowalter 1989; Franosch et al. 1997; Fabbian et al. 1999; Larson 1999; Fuchs &
Cates 2002). One of the first relations of suspension viscosity with the volume fraction
was proposed by Einstein (1906). He suggested that for a collection of hard spherical
particles whose radii are larger than those of the solvent and assuming no slip at
the solid–liquid boundary, creep flow and no particle hydrodynamic interaction, the
dynamic viscosity of the suspension ηs is given by the relation ηs/ηm = (1 + 2.5φ),
where ηm denotes the dynamic viscosity of the solvent medium. Einstein’s relation
has been extensively subjected to experimental verification and proven to be accurate
within a few percent for φ � 0.01. For higher volume fractions of spherical particles, a
number of extensions to Einstein’s equations have been proposed. These relations are
discussed in detail by Lyklema (2005). These relations give results similar to Einstein’s
and predict that the dynamic viscosity of our suspension increases by about 6.7 %–
7 % in the range of volume fractions φ = 0 – 0.025 used in the experiments. Similarly,
the density of the polystyrene particles is nearly equivalent to the density of the
aqueous electrolyte ρp/ρm ∼ 1.05, and hence we may assume that the density of the
solution does not change appreciably within the range of volume fractions used in
our study. We do not expect viscous fingering instabilities will develop in our flows
due to density and viscosity differences in a gravitational flow field, as the variation
in these parameters are not large enough to cause any instabilities in our experiments
(see Saffman & Taylor 1958; Homsy 1987).

As will be discussed in § 4 and § 6.4, variations in the dynamic viscosity and density
do not play a significant role in the development of EKIs, and we also show that our
simple scaling model matches well with our experimental results over two orders of
magnitude of the suspension volume fraction and three orders of magnitude of the
applied electric field.

3. Description of the flow conditions
In this work we study EKIs due to gradients in the volume fraction of suspended

particles in aqueous electrolytes. In this section, we describe the flow conditions of
the study. Figure 1 shows a schematic of the Y-shaped microchannel fabricated using
soft lithography of PDMS. The schematic shows (a) the stable base state and (b)
the unstable flow created due to the electric field applied transverse to the colloid
volume fraction gradient. Combined pressure and electroosmotic driven flows of
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Figure 1. Schematic describing the flow conditions at (a) stable base state and (b) unstable EK
flow of particle suspensions in a Y-shaped PDMS microchannel. Buffered aqueous and buffered
particle suspensions flow from the south (bottom) and north (top) wells respectively towards
the intersection and then flow along the x-axis (streamwise direction) towards the east (right)
well. The buffered stream from the south well has no particles (φm =0), ionic conductivity
σm and electrical permittivity εm, and the particle stream from the north well has a particle
volume fraction φs, ionic conductivity σ s and electrical permittivity εs . At the interface of
these two streams, there exists a diffusion layer of thickness δ across which the gradients in
particle volume fraction, electrical conductivity and permittivity occur. The channels have a
half-width w, depth d and lengths Ln. The solution conductivity and permittivity vary with
the local particle volume fraction. Applied electric fields couple with the conductivity and
permittivity gradients to generate electric body forces that destabilize the flow.

buffered aqueous and buffered aqueous particle suspensions respectively flow from
the south (bottom left) and the north (top left) wells and flow away from the Y-
intersection along the x-axis (streamwise direction) towards the east (right) well. The
buffered aqueous solution used in this case for both the particle and buffer streams
is comprised of 0.1 mM concentrations of phosphate buffer. The suspension stream
is only distinguished from the buffered stream by the addition of the fluorescent and
non-fluorescent polystyrene particles. Since both streams are aqueous, they are fully
miscible and form a diffuse interface. The minimum value of the Peclet number in
these flows (based on the diffusivity of the particles) is 3.85 × 106 which results in
a sharp but miscible interface of the fluorescent particle and buffer streams when
the flow is stable. The buffered stream from the south well has no particles φm =0,
ionic conductivity σm, and electrical permittivity εm. The particle stream from the
north well has a solution identical to that of the south well with the addition of
a particle volume fraction φs , which results in a solution ionic conductivity σs and
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electrical permittivity εs . At the interface of these two streams, there exists a diffusion
layer of thickness δ (shown by dotted lines in figure 1) across which the gradients in
conductivity and permittivity occur. Here the subscripts m, s denote the medium and
the suspension, respectively. The dashed-line box in figure 1(a) shows the imaging
region of interest which is approximately 1 mm long and 0.2 mm wide.

In our initial experiments, we found that unstable flow structures were rapidly
advected downstream due to electro-osmosis- and pressure-driven flows. These flow
structures grow exponentially in space but with smaller growth rates near the critical
field required for instability (see Posner & Santiago 2006). In order to capture the
critical conditions required for onset of instability, we conducted measurements in
the east channel 5.5 mm away from the channel Y-intersection, so that they will have
adequate time and space to grow and be detected.

The flow velocity in each channel depends on the local electric field En, the EO
mobility (which is a function of the ionic concentration and the pH of the electrolyte)
and both imposed and internally generated pressure gradients. We apply potentials
VN , VS and VE to the north, south and east wells respectively such that VN = VS and
VN >VE . PDMS has a negative zeta potential in our buffers (see Kirby & Hasselbrink
2004a), and the EO flow will be towards the east well. The particle also has a negative
zeta potential (driving it towards the north well) which is greater than that of the
channel wall, resulting in a net EK particle motion from the east towards the north
well. To force the particles out of the north well and down the east channel, we
impose a constant pressure-driven flow rate Q using a dual-syringe pump.

EK flows with gradients in particle volume fractions become unstable when the
distortion of the particle stream interface due to internally generated electroviscous
velocity occurs faster than the dispersion of this interface due to diffusion of the
particles. Figure 1(b) shows the schematic of an unstable EK flow. Applied electric
fields couple with conductivity and permittivity gradients in the flow to generate
electric body forces that renders the flow unstable above a certain critical electric
field. Here, we define the quantities Ea , β and γ as

Ea ≡ VN − VE

LN + LE

, (3.1)

β ≡ εrs

εrm

, (3.2)

γ ≡ σs

σm

. (3.3)

4. Derivation of the electric Rayleigh number for instability
In this section, we derive a scaling relation for the electric Rayleigh number that

accounts for the electric body forces as a function of the conductivity and permittivity
gradients in the flow. We start off with a modified Ohmic model of Lin et al. (2004)
which consists of equations for the conservation for mass with constant density (4.1);
conservation of momentum with constant viscosity and density and an electric body
force term fE (4.2); Gauss’ Law (4.3); and two convective diffusion equations for the
charge density (4.4) and electrical conductivity (4.5):

∇ · v = 0, (4.1)

Re

(
Dv

Dt

)
= −∇p + ∇2v − fE, (4.2)
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∇ · (εE) = ρe, (4.3)

∇ · (σ E) = 0, (4.4)

∂σ

∂t
+ v · ∇σ =

1

Rae

∇2σ. (4.5)

The non-dimensional ionic conductivity and the charge density are defined as

σ ≡ F 2(Λ+C+z2
+ + Λ−C−z2

−)

σ0

, (4.6)

ρe ≡ F (C+z+ − C−z−)

εEa/w
, (4.7)

where F is the Faraday constant; z is the valence number; and Λ is the mobility
of ions. The convective diffusion equation for the charge density (4.4) is simply a
conservation equation for the electromigration current in the system.

The modified Ohmic model used here is primarily distinguished from the system of
equations used by Melcher for EHD (Melcher & Taylor 1969) flows by the inclusion
of the diffusive term in the equation for conservation of conductivity (4.5) which was
first suggested by the work of Baygents & Baldessari (1998). Baygents & Baldessari
(1998) found that molecular diffusion had an important stabilizing effect and is
responsible for the existence of a threshold or ‘critical’ Rayleigh number below which
their flow was stable.

The related non-dimensional parameters are the Reynolds number,

Re =
ρ0Uevd

ηm

, (4.8)

where ρ0 and ηm are the medium density and viscosity, and the electric Rayleigh
number,

Rae =
Uevδ

Deff

. (4.9)

In this case, the appropriate scaling for the diffusivity is that of the particles, in
contrast to the ionic diffusivity, since the conductivity and permittivity fields are
coupled with the particle distribution. The diffusivity of the particles is given by the
Stokes–Einstein equation as

Deff =
kT

6πηma
, (4.10)

where a is the particle radius; k is the Boltzmann’s constant; and T is the temperature
in Kelvin. Here δ is the diffusion length scale over which the particle volume fraction,
electrical conductivity and permittivity gradients occur. The diffusion term does not
appear in the final expression for the electric Rayleigh number as it did in previous
work (see Posner & Santiago 2006). The electroviscous velocity Uev results from a
balance of the viscous and electric body forces in the momentum equation (4.2) and
is given as

Uev =
fEd2

ηm

. (4.11)

This is similar to the electroviscous velocity used in the previous work except
that here it scales with the entire body forces, not just the electrostatic force ρeE
(see Baygents & Baldessari 1998; Chen et al. 2005; Posner & Santiago 2006). The
electric body forces are also due to the gradients in permittivity which contribute to
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a polarization force that is folded into the electric body force equation. A general
expression for the electric body force per unit volume on a liquid is given by the
relation (see Stratton 1941)

f E = ρe E − 1

2
E2∇ε +

1

2
∇

(
ρs

∂ε

∂ρs

E2

)
. (4.12)

The first term is an electrostatic force due to the electric field acting on the net
charge density ρe in the fluid. Usually in EK flows of aqueous solutions for lab-on-a-
chip applications, the net charge is typically considered to be limited to a thin EDL
that surrounds solid–liquid and immiscible liquid–liquid interfaces. However, recent
reports on EK instabilities have shown that a net charge density can also develop
within the bulk fluid, outside the thin EDL at the interface of two liquids with
different conductivities (see Lin et al. 2004; Chen et al. 2005; Oddy & Santiago 2005;
Posner & Santiago 2006). The second term is a polarization force due to electric fields
coupled with gradients in permittivity, while the third term denotes the body force
that may develop due to density differences that may occur due to the deformations
of the dielectric, i.e. suspension. Assuming that the particles are hard, rigid spheres,
that the fluid is incompressible and that the particle has nearly the density of the
background solution (ρp/ρm ∼ 1.05), the last term in (4.12) can be assumed to be
negligible and is hence neglected.

The key to the scaling analysis is the charge density per unit volume ρe described
in (4.3). The charge density forms in the bulk regions of flow in which permittivity or
conductivity gradient exists and couples with the applied field to generate electrostatic
forces in the bulk liquid. From Gauss’ Law (4.3), we can write

ρe = ε∇ · E + E · ∇ε. (4.13)

From (4.4), the conservation equation for current can be written as

∇ · E = −E · ∇σ

σ
. (4.14)

Now (4.13) can be rewritten as

ρe = −εE · ∇σ

σ
+ E · ∇ε. (4.15)

Following Chen et al. (2005) we perform asymptotic expansion of the charge density
equation for each variable with the form f = f0 + ξf ′, where the subscript 0 denotes
the base state; the prime denotes the perturbation; ξ is a smallness parameter; and
terms of the order ξ 2 are dropped as higher order terms. Figure 2(a) shows the base
state, and figure 2(b,c) shows the perturbation states for the flow in consideration.
Assuming electroneutrality for the base state (as shown in figure 2a) such that
ρe0 ∼ ε0 E0 · (∇σ0/σ0) + E0 · ∇ε0 is zero (gradients perpendicular to electric fields), the
perturbation charge density is given by the relation

ρ ′
e ∼ −εE0 · ∇σ ′

σ0

− εE′ · ∇σ0

σ0

+ E0 · ∇ε′ + E′ · ∇ε0. (4.16)

In the above equation, we can consider the perturbation charge density arising due to
the following four components: (i) the gradient of the conductivity perturbation in the
direction of the base electric field; (ii) the electric field perturbation in the direction
of the base conductivity gradient; (iii) the gradient of the permittivity perturbation
in the direction of the base electric field; and (iv) the electric perturbation in the
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Figure 2. Schematic of the east channel for (a) stable base state of flow with an axially applied
electric field, Ea , and (b) unstable state with a charge accumulation ρe at the interface of the
two streams due to the gradients in the conductivity and permittivity. (c) Worst case scenario
wherein the conductivity and permittivity gradients are collinear with the applied electric field
(similar to that of the Melcher & Taylor 1976 model). The flow and the electric fields are from
the left to the right. Conservation of the electromigration current yields 2Eaγ /(γ +1) on the
high-conductivity side and 2Ea/(γ +1) on the lower conductivity side. The electric field in the
worst case perturbed state shown in (c) is (E1 – E a) = Ea(γ − 1)/(γ + 1).

direction of the permittivity gradient. We now follow Chen et al. (2005) who scaled
the charge density due to conductivity gradients with the perturbation electric field
gradient εE′ · ∇σ0/σ0 because it represents the strongest possible dependence on
gradients of conductivity and the resultant variations in the electric field. To scale
the perturbation electric field, we again consider the strongest perturbed conductivity
field, which results in a largest value for electric field perturbation and therefore the
highest net charge density as shown in figure 2(c). If we treat the two electrolyte
solutions as resistors in series and assume that half the channel is made up of a low-
conductivity solution and the other half of high-conductivity solution, the resistances
of these solutions can be expressed as L/ (2σ1A) , L/ (2σ2A). With an applied field of
Ea we get the following equation for the total current flux through the system as a
function of applied field:

i =
2Eaσ1σ2

σ1 + σ2

. (4.17)

Conserving the electromigration current in the system, ∇ · (σE) = 0, we can determine
the electric field in each solution as

E1 =
2Eaγ

γ + 1
, (4.18)

E2 =
2Ea

γ + 1
, (4.19)

where γ is the conductivity ratio σ s/σm. We neglect the diffusive and advective
currents because of high-conductivity solutions and thin EDLs (see Probstein 1994).
The perturbation field is the local field minus the applied field E′ = E1 − Ea given as

E′ = Ea

γ − 1

γ + 1
. (4.20)

The base state conductivity gradient may be scaled as

∇σ0

σ0

∼
(

(σs − σm)/2δ

(σs + σm)/2

)
∼

(
1

δ

γ − 1

γ + 1

)
. (4.21)

The permittivity gradient coupled with an electric field also contributes to the charge
density as shown in the third and fourth terms of (4.16). Scaling the charge density with
the fourth term would result in E′.∇ε0 ∼ Ea(γ − 1)/(γ + 1)∇ε. However, this scaling
suggests that a conductivity gradient is required for charge to be generated when
an electric field is coupled with a permittivity gradient. Since this is not physically
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relevant to our flows in which both the conductivity and permittivity gradients can
independently generate a charge density, scaling with the gradient of the perturbation
term E0 · ∇ε′ is more appropriate. Thus, we have

ρ ′
e ∼ −εE′ · ∇σ0

σ0

+ E0 · ∇ε′. (4.22)

The above scaling method allows for the development of charge density in a flow field
in the presence of permittivity gradients alone when the conductivity field is uniform,
∇σ0 ∼ 0. The gradient of the permittivity perturbation term can now be scaled as

∇ε′ ∼ ∇ε ∼ εm − εs

δ
=

εm(1 − εs/εm)

δ
=

εm

δ
(1 − β). (4.23)

The perturbation charge density now scales as

ρ ′
e ∼ −εm

δ

(
γ − 1

γ + 1

)2

Ea +
εm

δ
(1 − β)Ea. (4.24)

The electric body force term, fE is then expressed as

fE ∼ εm

δ

(
γ − 1

γ + 1

)2

E2
a +

εm

2δ
(1 − β)E2

a, (4.25)

where the final term for fE includes contributions from both electrostatic and
polarization forces. Combining (4.9), (4.10), (4.11) and (4.25), the expression for
the electric Rayleigh number becomes

Rae ∼ εmd2E2
a

6πa

kT

[(
γ − 1

γ + 1

)2

−
(

1 − β

2

)]
. (4.26)

Table 1 lists the constants used in (4.26). Here, the electric Rayleigh number definition
does not depend on the local diffusion thickness (since it is cancelled by the δ−1 term
in the body force term of (4.25)) or the fluid viscosity (since it is cancelled by the
viscosity in the particle diffusivity equation (4.11)). This scaling suggests that gradients
in either the conductivity (left term in square brackets) or permittivity (right term) can
alter the electric Rayleigh number and drive the instability. The above formulation
for the electric Rayleigh number will be used in our subsequent analysis, and it will
be shown in § 6.5 that this describes the trends of instability onset observed in our
experiments.

It is to be noted here that the above equations for the conservation of mass (4.1) and
momentum (4.2) are not applicable to colloidal systems such as gels and glasses which
exhibit the properties of viscoelasticity, shear thickening and thinning. As described
earlier in § 2.4, we predict that the density will not vary more than 0.2 %, and the
viscosity will not vary more than 7 %. Although these modifications may alter the
local flow patterns, we argue that these modifications do not drive the instability or
alter the physics that govern the onset of instability. In § 6.5, we show good agreement
between the above scaling relation and experimental results, which suggests that the
modification in the density and viscosity are not critical to predicting the onset of
instability in this particle volume fraction range.

5. Experimental methodology
In this section, we describe our experimental set-up, imaging system, electronics,

colloidal chemistry, microchannel fabrication and the processing of raw scalar images.
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Symbol Description Value

εrm Buffer relative dielectric constant 78.55 at 25◦ C
εrp Particle relative dielectric constant 2.4
ηm Water dynamic viscosity 1.0 × 10−3 kg m−1s−1

ςp Particle zeta potential −80 mV
ρm Water density 1.0 × 103 kg m−3

ρp Particle density 1.05 × 103 kg m−3

Deff Stokes–Einstein particle diffusivity 4.365 × 10−13 m2 s−1

K Boltzmann’s constant 1.38 × 10−23 JK−1

D Channel depth 3.0 × 10−5 m

Table 1. Values of experimental parameters and fundamental constants used in the study.
The depth of the PDMS microchannel was measured by using a profilometer (KLA-Tencor
Corporation, San Jose, CA, USA).

5.1. Scalar imaging: experimental set-up and image analysis

We obtained instantaneous scalar images of fluorescent particle streams using epi-
fluorescence microscopy and charge-coupled device (CCD) camera imaging. Figure 3
shows the experimental set-up. Experiments were performed in Y-shaped PDMS
microchannels fabricated using soft lithography. The channels have a rectangular
cross-section with a half-width of w =100 μm, depth d = 30 μm and total length of 15
mm (LN = 5 mm; LE = 10 mm). Pressure-driven flow was maintained by a dual-syringe
pump (KDS200P, KD Scientific, Holliston, MA, USA). The syringes were connected
to the chip using Tygon tubes (ID 0.02′′ OD 0.06′′ VWR, Brisbane, CA, USA) which
were interfaced to the PDMS reservoirs via stainless steel tubes (0.025 OD × 0.017
ID, 0.5′′ length, New England Small Tube, Litchfield, NH, USA). Electric potentials
were applied using platinum electrodes (Omega Engineering Inc., Stamford, CT, USA)
inserted into the Tygon tubes approximately 5 mm above the top chip surface. We
expect that there is negligible drop in the electrical potential between the wire insertion
point and the channel entrance, since the area of the tube is about four orders of
magnitude larger than the cross-sectional area of the microchannel, and the potential
drop in the tube should be less than 0.1 V.

The electric potentials were applied and synchronized to the CCD image
acquisitions, using a high voltage sequencer (HVS448 6000D, Labsmith, Livermore,
CA, USA). For typical currents and duration as observed in our experiments (at
the highest possible electric field, Ea ∼ 1000 V cm−1), we do not observe significant
electrolysis bubble generation. If small bubbles do form, they remain within the
tygon tubing that is used to deliver the pressure-driven flows into the microfluidic
chips. An epifluorescent microscope (Nikon TE2000, Japan) with a 10×, NA = 0.30
objective (Nikon, Japan), metal halide illumination (EXFO X-Cite 120, Ontario,
Canada) and epifluorescent filter cube (excitation at 540 nm, emission at 625 nm;
Chroma, Rockingham, VT, USA) were used to image the flow. Images were recorded
on a back-illuminated, Peltier-cooled, 16 bit CCD camera with on-chip gain (Cascade
IIb Photometrics, Tucson, AZ, USA) fitted with a 0.63× demagnifier.

We then normalize each image of scalar concentration for systematic errors with
the equation

Cj (x, y) =
Ij (x, y)raw − I (x, y)dark

I (x, y)flat − I (x, y)dark

, (5.1)
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Figure 3. Experimental set-up of epifluorescence microscopy used for imaging the flows
with the following system components: (a) syringe pump; (b) PDMS microfluidic device; (c)
objective; (d) metal halide bulb; (e) epifluorescence filter cube; (f ) reflector; (g) CCD camera
with a 0.63 demagnifier; (h) computer; (i). high-voltage sequencer.

where

I (x, y) =

n∑
j=1

Ij (x, y)

n − 1
. (5.2)

Here the instantaneous image index is j, and the subscripts raw, dark and flat
denote the raw, dark-field and flat-field images respectively. The flat-field images
are recorded with the entire channel filled with the particle suspension and help
to correct for non-uniform illumination and variations in the channel height, i.e.
depth averaging. The dark-field images are recorded with the channels filled with
the aqueous buffer and correct for external light scattered off channel walls and
not chromatically filtered, fluorescence from wall-adsorbed particles and sensor dark
noise. We record 100 frames of dark- and flat-fields before and after each experiment,
respectively.

5.2. Electrophoretic mobility measurements: experimental set-up and analysis

The electrophoretic mobility of particles is typically a function of the suspension
volume fraction (see Zukoski & Saville 1987, 1989). Measurements of the average
electrophoretic mobility of the particles as a function of volume fraction were also
performed. The measurements were conducted in a 200 μm square glass capillary
channel suspended across an acrylic frame with fluid reservoirs at its ends. The
acrylic capillary support was fabricated using a laser ablation system (Universal
Laser, Scottsdale, AZ, USA). We suppressed the EO flow in the capillary by coating
the inner walls of the channel using polyethylene oxide (PEO) (see Preisler & Yeung
1996). Suppressing the EO flow in the channel enabled for direct measurement of
the average electrophoretic mobility of the particle without the effect of EO flow.
Electric potentials were then applied through platinum electrodes dipped into the
liquid reservoirs containing particle suspensions. After filling the liquid reservoirs
and before conducting the measurements, we waited for the height of the liquid in
the reservoirs to equalize. The absence of particle motion signified equalization in
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the pressure head across the fluid reservoirs. Digital images of the electrophoretic
motion of particles in the channel were recorded with a CCD camera (Cascade
IIb, Photometrics, Tucson, AZ, USA). To obtain precise times between images, the
camera was triggered by a frequency generator (Agilent Technologies, USA). We used
standard cross-correlation PIV algorithms with ensemble averaging in correlation
space to obtain the velocity fields (see Wereley et al. 1998). Interrogation window of
128 pixels × 8 pixels with a 50 % overlap was used and then area averaged to obtain
the average value for the particle electrophoretic velocity. Velocity was measured for
six different values of electric fields (E = 20 V cm−1−150 V cm−1) at each of the
five different values of volume fraction of particles (φ = 0–0.02). The particle mobility
μ =Uep/E at each volume fraction was then extracted as the slope of a least squares
linear fit with R2 � 0.99 from the plot of the electrophoretic velocity as a function
of the electric field. From these experiments, it was found that the mobility ratio
approximately obeyed the expression (1 − kφ) as proposed by Zukoski & Saville
(1987, 1989). The value of the constant k observed from our experiments was about
two orders of magnitude lower than that observed by Zukoski & Saville (1987, 1989),
indicating that there was very little or no variations in the electrophoretic mobility of
particles with volume fraction in our buffers. The value of the constant k increases
with decreasing ionic strength of the background electrolyte, which suggests that the
decrease in the mobility ratio is more dramatic at lower ionic strength electrolytes
because of thicker EDLs. Further details of these measurements are included in
Navaneetham (2007).

5.3. Colloid and solution chemistry

For the instability experiments, the background aqueous buffer solution used was
0.1 mM phosphate buffer prepared by the titration of monosodium phosphate
(NaH2PO4) conjugate acid with disodium hydrogen phosphate (Na2HPO4) conjugate
base (Sigma Aldrich, St. Louis, MO, USA). The pH and conductivity of the buffer
solution were respectively 6.0 and 29.4 μS cm−1 as measured using a combination
pH/conductivity meter (Corning, NY, USA). This background solution was chosen
as it provided for large modifications in the bulk fluid conductivity due to the addition
of the particles and also buffered changes in the pH due to electrolytic reactions at
the electrodes. The buffered solutions were filtered prior to making the particle
suspensions, using a 450 nm syringe filter (Millipore, Billerica, MA, USA). Negatively
charged, 500 nm polystyrene particles (Duke Scientific Inc, Fremont, CA, USA) were
used in this work. The fluorescent polystyrene microspheres had respective excitation
and emission wavelengths of 542 nm and 612 nm. We define the volume fraction φ of
particles as

φ =
n · 4

3
πa3

V
, (5.3)

where n is the number of particles; a is the particle radius; and V is the total
volume of the solution. The particle suspensions consisted of both fluorescent and
non-fluorescent polystyrene particles. The volume fraction of fluorescent spheres
was maintained constant at φ =0.0003, and the volume fraction of non-fluorescent
particles was varied from φ = 0.0022 to φ = 0.0247 in all of our experiments. We
measure the conductivity of the resultant particle solutions by measuring the ohmic
currents across a glass capillary filled with the colloidal suspension at seven different
applied voltages (see Navaneetham 2007). Care was taken not to use electric fields that
resulted in significant Joule heating. The solution conductivity was then determined
using the relation σ = IL/AV, where A, L are the cross-sectional area and length of
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the capillary, respectively. The ratio of I/V was measured as the least squares linear
fit of the applied voltage versus the Ohmic current with R-squared values greater than
0.99. These measurements were also compared with the conductivity measurements
from a standard conductivity meter (Corning, NY, USA) and were found to be in
very good agreement. The solution conductivities reported here were measured using
the capillary method.

Average zeta potential of both the fluorescent and non-fluorescent particles at
infinite dilutions were also measured separately using a dynamic light scattering
(DLS) system (PSS Nicomp, Santa Barbara, CA, USA) and found out to be equivalent
to ζp = −80 mV. Zeta potentials of particles dispersed in phosphate buffers at four
different concentrations were also measured and are provided in the Appendix.

5.4. Microfabrication of PDMS devices

Soft lithography of PDMS was used to fabricate the Y-shaped microchannels. Details
of this process can be found elsewhere (see Duffy et al. 1998), but we have included
a brief procedure specific to this work. Masks were produced on transparent mylar
sheets using a high resolution (20 000–50 000 dpi) printing system (Fineline Imaging,
Colorado Springs, CO, USA). SU-8 (negative photoresist) patterned on a 4′′ silicon
wafer served as the master for soft lithography. The surface of the master was
silanized with trichloro methyl silane (TCMS) vapor for about 30 minutes. PDMS
(Dow Corning Corporation, Midland, MI, USA) in a 10:1 polymer: fixing agent ratio
was poured over the master, degassed at low pressure in a dessicator and baked at
80◦ C in a convection oven for 60 minutes. The resultant structures were then exposed
to oxygen plasma (Tegal Plasmaline Asher, Rocklin, CA, USA) at a power of 200 W
and 400 mJ pressure for 60 seconds.

5.5. Experimental conditions

For the instability experiments, we recorded data for six values of particle volume
fractions φ = 0.0025, 0.005, 0.008, 0.011, 0.018, 0.025 all dispersed in a 0.1 mM
concentration of phosphate buffer, four values of imposed pressure-driven flow rates
Q= 50 μL hr−1, 100 μL hr−1, 150 μL hr−1 and 200 μL hr−1 and nominally applied
fields Ea spanning over three decades from 0 to 1200 V cm−1. For each case, we
ramped the field Ea from 0 V cm−1 to a maximum field in steps of 13.3 V cm−1 (20 V
each step). The maximum allowed field was set by the flow rate and difference in
mobility of the particles and the channel walls. Since the electrophoretic mobility of
the particles is larger than that of the channel, the net EK motion in the particle
stream is in the direction of positive electrode (north). At large electric fields, the
velocity of the particles exceeds the local velocity due to the pressure-driven and EO
flows in the channel, and the particles do not enter the east channel. The use of
positively charged particles would have avoided the usage of external pressure-driven
flows, but fluorescently labelled, neutrally buoyant, positively charged particles are
not readily available and adsorb to the channel walls.

We record 100 frames at each applied field with 100 × 512 pixels at
70 frames per second with 2 ms exposure time. In addition to these systematic sets
of experiments, additional experiments were also performed to ensure repeatability
across different conditions and microfluidic devices. Calibration experiments were also
performed prior to the reported instability experiments to ensure that the steady flow
rates could be maintained from the syringe pump over the duration of the experiment.

Before the start of each experiment, the chip microchannels were flushed thoroughly
with deionized (DI) water for about 10 minutes and 0.1 mM phosphate buffer solution
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Figure 4. Variation of the electrical conductivity with volume fraction of negatively charged
500 nm polystyrene particles. Experimental data points are shown for particles in four different

electrolytes: DI water (κa ∼ 1); 0.1 mM phosphate buffer (κa ∼ 8); 1 mM

phosphate buffer (κa ∼ 25); 10 mM phosphate buffer (κa ∼ 80). The inset shows the
variation of the conductivity at lower volume fractions. The electrical conductivity increases
with particle volume fractions. The slope of the curve increases with decreasing background
ionic strength.

for an additional 10 minutes. All the digital images were taken at a constant distance
5.5 mm east from the channel intersection. Images were acquired after a 3 second
delay of changing the potential, allowing the flow to reach a steady condition. The
elapsed time for each experiment was approximately 9 minutes. All the experiments
were performed with a constantly imposed pressure-driven flow of 100 μL hr−1 unless
otherwise noted. To elucidate the dependence on flow rate, additional experiments
were conducted with varying flow rate and a constant volume fraction of φ =0.011.

6. Results and discussions
In this section, we first present the measured variation of electrical conductivity with

the volume fraction of particles. We then describe the steady base state conditions
and qualitative analysis of the unstable flow fields obtained by the reduction of scalar
images. We discuss our technique for determining the critical electric field required for
unstable flows and show how the critical electric field varies with the volume fraction
φ and imposed pressure-driven flow rate Q. The measured critical field is compared
with the simple scaling analysis, which shows that the flow becomes unstable at
a critical electric Rayleigh number of Rae = 1.8 × 105 within the range of volume
fractions in our study.

6.1. Measurement of non-dilute suspension conductivity

It is well known that the EDL streaming current surrounding colloidal particles can
contribute to a modification in the suspension’s conductivity as reviewed in § 2.1.
We measure the variation of our colloidal suspension’s conductivity with volume
fraction at three different values of buffer ionic strengths. Figure 4 shows the values
of solution conductivity as a function of the particle volume fraction φ for DI water
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and 0.1, 1 and 10 mM phosphate buffer. The resulting EK radii κa are approximately
1, 8, 25 and 80 for the DI, 0.1, 1 and 10 mM phosphate buffers, respectively. The
conductivity for each solution is normalized by the conductivity of the base electrolyte
at zero volume fraction. The inset of figure 4 shows the conductivity at small volume
fractions. For volume fractions greater than φ > 0.0001, the conductivity increases
linearly with volume fraction. As expected, the slopes of the curves increase with
decreasing background electrolyte (and EK radius κa) concentration due to increase
in Du, which indicates the appreciable role of surface conductance around the particle
relative to the conductance of the background solution. At higher ionic strengths (and
κa), the relative thickness of the Debye length shrinks (see Probstein 1994), and the
magnitude of the zeta potential of the particles decreases (see Kirby & Hasselbrink
2004) which results in a decreased surface conductance effect. The zeta potential
of our particles at infinite dilution are listed in the Appendix. In the case of DI
water, there is an initially steep slope for volume fractions below φ < 0.0001 which
is observed in the experiments. This curvature is due to the electric-field-induced
distortion of the EDL and surface conductance effects of the relatively thick and
isolated EDL of each particle in low-ionic-strength DI solution (see Carrique et al.
2003). The scaling relation presented in equation (4.26) requires a relation for the
suspension conductivity ratio γ as a function of the volume fraction. We obtain this
by making a least squares linear fit of the 0.1 mM buffer data, and it is given by the
relation

σs

σm

= γ = 780φ + 1, (6.1)

with an R-squared value of 0.9940.
To confirm that the variation of the electrical conductivity of the suspension

was due to the particles and not packaged background salt or surfactants, we
performed additional experiments. A particle solution with a volume fraction of
φ = 0.01 dispersed in a 1 mM, pH 7 phosphate buffer with an electrical conductivity of
301.1 μS cm−1 was taken as a test solution. We then spun this solution down in a
centrifuge at 8600 R.P.M. for about 50 minutes. The extracted supernatant fluid con-
tained no particles, and its electrical conductivity was measured to be approximately
equivalent to that of the base solution within experimental uncertainties. A similar
experiment was also performed with the 0.1 mM phosphate buffer, and consistent
results were obtained. Dissolved salts and surfactants cannot be separated using a
centrifuge, so the spun solution still contained them. The results of these experiments
thus indicated that the variation in the suspension conductivity was clearly due to the
particle EDL streaming current as predicted and measured by various researchers as
reviewed in § 2.1.

6.2. Stable base state and unstable flows

In this section, we first describe the conditions of the stable base state flow and the
qualitative features of the instabilities developed. Figure 5 shows representative scalar
images of the flow recorded at the Y-intersection with Q= 300 μL hr−1, φ =0.011, at
various applied electric fields. Figure 5(a) shows instantaneous representative scalar
fields of the steady base state at 0 V cm−1 in which the particle and the buffer streams
flow steadily from the north and south wells respectively towards the east well. As
we increase the electric field to around 1000 V cm−1, the particles begin to aggregate
as shown in figure 5(b). These aggregates are visualized as regions of bright intensity.
Electric field-induced-particle aggregation has been observed in electrorheological
flows with conductive particles in insulating liquids (see Trau et al. 1995). We have
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Figure 5. Instantaneous scalar images Cj (x,y) of EK flows with non-dilute particle suspen-
sions. The bottom buffered stream is 0.1 mM phosphate buffer, and the top stream is 0.1 mM
phosphate buffer with particle volume fraction φ = 0.011 of polystyrene particles. Flows are
in 200 micron wide PDMS microchannels with pressure-driven flow rate Q= 300 μl hr−1 and
applied fields Ea noted above each image. The images are taken at the Y-intersection of the east
channel. (a) At low electric field the flow is stable. (b) At 1000 V cm−1, the particles aggregate
and form clusters as observed by the high-fluorescence-intensity regions. At 1066 V cm−1, the
flow becomes moderately unstable as can be seen by the wrinkling of the particle interface.
As the field increases further, coherent wavelike structures are observed. The instabilities grow
as they advect downstream along the east channel.

observed particle aggregation at fields below critical electric fields for instability, with
particle sizes ranging from 500 nm to 10 μm and with and without volume fraction
gradients. At larger fields, Ea =1066 V cm−1, the flow becomes marginally unstable as
denoted by the wrinkling of the particle stream interface at x/w> 6 as shown in figure
5(c). As we further increase the electric field to Ea = 1133 V cm−1, the disturbances
grow rapidly, forming coherent wavelike structures that grow in magnitude at x/w> 6
as shown in figure 5(d). Upon further increasing the electric field to Ea = 1200 V cm−1,
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the perturbations increase in magnitude and originate further upstream at x/w ∼ 4.
The perturbation magnitude grows along the length of channel, x/w, and the particle
and buffer streams appear to be well mixed down the channel.

Figure 6 shows instantaneous scalar images recorded at a distance of 5.5 mm
from the intersection with a reduced pressure-driven flow velocity of Q= 100 μL hr−1

and φ = 0.025 at various electric fields. The qualitative features of the flow are
similar to those for the higher flow rate case; however we see that the perturbations
are larger for a given electric field because the volume fraction is larger, and the
advective velocity is lower, and we observe the perturbations further downstream.
The magnitude of the scalar perturbations depends on the external pressure-driven
flow velocity Q. At a given electric field, the magnitude of the perturbation increases
with decreasing flow rate. The pressure-driven flow advects the instabilities down the
east channel, while the instability temporal growth rate is set by the applied field. We
use this downstream, low-flow-rate condition for determining the critical electric field
because it provides the most precise measure. At high flow rates, the perturbations
are advected downstream before they can grow large enough to be observed. At lower
flow rates, the net EK motion of the particles (the EO flow minus the electrophoretic
velocity) can exceed the pressure-driven flow, resulting in the migration of the particles
to the north well. For this reason, all the determination of the critical electric
field, Ec, was conducted with a constantly imposed pressure-driven flow rate of
Q= 100 μL hr−1. In § 6.5, we present the critical electric field at Q= 100 μL hr−1, and
in § 6.6, we explain how the pressure-driven flow influences the instabilities.

Separate experiments were also carried out with the addition of 10 μM concentration
of fluorescein dye (with an excitation and emission wavelengths of 498 nm and 525 nm
respectively) to visualize the flow independent of the particles. These experiments
showed that the flow and not just the motion of the particles is unstable.

6.3. Interpretation and analysis of scalar images

In this section, we briefly discuss our method of analysing the quantitative scalar
images. The average scalar field is calculated as

C(x, y) =

n∑
j=1

Cj (x, y)

(n − 1)
, (6.2)

where n is the number of images. The mean square perturbation energy is calculated
as

C ′(x, y)2 =

n∑
j=1

C ′
j (x, y)2

(n − 1)
, (6.3)

where the scalar perturbation is C ′
j (x, y) = Cj (x, y)−C(x, y). Figure 7 shows the mean

square scalar perturbation fields for φ =0.025, Q= 100 μL hr−1. Figure 7(a) shows
the stable base state perturbation field corresponding to zero applied electric field.
Although the applied field is zero, there still is finite perturbation energy throughout
the particle-laden region due to the random distribution of fluorescent particles. The
variation in fluorescent intensities coupled with the pressure-driven flow results in a
finite value of perturbation energy. Figure 7(b) is stable but shows a slight increase
in the perturbation energy due to particle aggregation. Figure 7(c) shows marginally
unstable flow at regions near the interface (y/w) ∼ 0 in which the conductivity and
permittivity gradients are the largest. As we increase the applied electric field Ea , the
perturbations grow in magnitude and extend further into the particle and non-particle
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Figure 6. Instantaneous scalar images Cj (x,y) of EK flows with non-dilute particle
suspensions. The bottom buffered stream is 0.1 mM phosphate buffer, and the top
stream is 0.1 mM phosphate buffer with particle volume fraction φ = 0.025 of polystyrene
particles. Flows are in 200 micron wide PDMS microchannels with pressure-driven flow rate
Q= 100μl hr−1 and applied fields Ea noted above each image. Images are taken in the east
channel 5.5 mm downstream of the Y-intersection. These images are representative of the
conditions and region of interest that was used to determine the critical electric field. (a) At
low electric field the flow is stable. (b) At moderate field 240 V cm−1 the particles aggregate
and form clusters of high fluorescence intensity. At 333 V cm−1, the flow becomes moderately
unstable as can be seen by the wrinkling of the particle interface. As the field increases further,
sinuous structures are observed.

streams on either side of the interface as shown in figure 7(d, e). We found that the
magnitude of these mean square scalar perturbation values increases with decreasing
pressure-driven flow rate, Q. In § 6.6, we show how the perturbation energy and critical
electric field required for instability depend on the pressure-driven flow rate.
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Figure 7. Scalar perturbation energy fields C ′(x, y)2 of EKIs in east channel at 5.5 mm
downstream of the Y-intersection with φ = 0.025 and pressure-driven flow of Q= 100 μl hr−1

(experimental conditions of figure 6). When the flow becomes unstable, E= 333 V cm−1,
localized regions of high perturbation energy are observed along the region of interface in which
the conductivity and permittivity gradients are the maximum. As the field is increased further,
the instabilities grow, resulting in larger magnitude perturbation energies. The perturbation
fields are used to determine the critical field required for onset of the instability.

6.4. Perturbation surface plots

Figure 8 shows x-area-averaged surface maps of scalar perturbation versus the
applied field Ea and transverse coordinate y/w for a pressure-driven flow velocity of
Q= 100 μL hr−1 and volume fractions of (a) φ = 0.005, (b) φ =0.008, (c) φ = 0.018
and (d) φ = 0.025. These plots are obtained by averaging the scalar perturbation fields
C ′(x, y)2 in the streamwise x direction, resulting in an area-averaged perturbation

energy 〈C ′(x, y)2〉x , where the brackets denote the spatial average, and the subscript
x denotes the direction. At low electric fields, the average perturbation energy in the
particle-laden stream y/w > 0 is at a base value. The perturbation energy remains
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Figure 8. Surface maps of x-area-averaged scalar perturbation energies 〈C ′2〉x as functions
of nominally applied field Ea and transverse channel dimension y/w. Maps are shown for
Q= 100 μl hr−1 and particle volume fractions of (a) φ = 0.005, (b) φ = 0.008, (c) φ = 0.018
and (d) φ = 0.025. The perturbation energy increases from a base value at the critical applied
electric field Ec . The critical electric field decreases with increasing volume fraction. The
base perturbation energy varies with volume fraction because of secondary scattering of
non-fluorescent particles. The increase in perturbation energy is most pronounced at the
particle interface, y/w= 0. At higher electric field the perturbation energy moves into the
buffered stream as shown in (b) at ∼900 V cm−1.

at this base level until the critical applied electric field Ec is reached, at which
the perturbation energy starts to increases from its base value. This behaviour is
distinctly visible at the interface of the two streams (y/w ∼ 0), where the conductivity
and permittivity gradients are the largest. For example in figure 8(d) the maximum
value of the perturbation curve increases monotonically from its base value of ∼0.06
at Ea ∼ 300 V cm−1 until 850 V cm−1 at which it starts to decrease. This decrease in the
perturbation energy at higher applied electric fields is primarily due to the reduction
in the number of fluorescent particles in the region of interest, when the particles
retract into the north well due to the net EK velocity exceeding the pressure-driven
and EO flow velocities. Note that the position of the maximum perturbation energy
shifts to y/w > 0 at higher electric fields because the particle/buffer interface shifts
due to the electrophoretic drift of the particles. As the volume fraction increases the
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Figure 9. Plot of the maximum x-area-averaged scalar perturbation energy 〈C ′2〉x,max as a
function of applied electric field Ea for φ = 0.025 and Q= 100 μL hr−1. The critical electric
field is defined as the field in which the maximum perturbation energy in the system starts to
increase monotonically (Ec = 302.5 V cm−1). The inset shows the derivative of the maximum
perturbation energy curve with respect to the electric field. The critical electric field is defined
as the field in which the perturbation energy starts to increase monotonically and is simply

equal to d(〈C ′2〉x,max )/dEa = 0 which is denoted with a dashed line.

maximum perturbation increases, and the critical electric field decreases. We expect
this behaviour because the conductivity and permittivity gradients in the flow increase
with the volume fraction. The next section will discuss the quantitative determination
of the critical electric field for instability as a function of the volume fraction φ.

6.5. Variation of critical electric field with particle volume fraction

To determine the critical field required for instability, we start by calculating the
maximum value of the averaged scalar perturbation energy〈C ′2〉x, max for each electric
field as shown in figure 9 for φ = 0.025, Q= 100 μL hr−1. The initial decrease in the
maximum perturbation energy curve is due to the onset of the particle’s electrophoretic
drift in the reverse flow direction. The perturbation energy increases when the flow
becomes unstable. We define the critical electric field Ec as the value of the applied
field at which the maximum value of the scalar perturbation energy starts to increase
from its base value and increases monotonically as a function of the applied field. In
practice, we determine the critical field by calculating its derivative in respect to the
electric field d〈C ′2〉x, max/dEa as shown in the inset of figure 9. The critical electric field

is simply defined as the electric field at which the value of d〈C ′2〉x, max/dEa reaches
zero as denoted by the dashed lines.

We spatially average in the streamwise direction to increase the sensitivity of our
algorithm for determining the critical electric fields. In our previous EKI work on
ionic conductivity gradients we averaged the perturbations in the transverse direction
and showed that the instabilities grow exponentially in the axial direction consistent
with the perturbation theory (see Posner & Santiago 2006). In this previous work we
showed that the exponential growth rate K increased with the applied electric field.
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Figure 10. Plot of the maximum averaged scalar perturbation energy profiles for φ = 0.005,
0.008, 0.011, 0.018 and 0.025 at a pressure-driven flow velocity of Q= 100 μL hr−1. The
dashed line denotes the critical electric field for each volume fraction. The perturbation energy
increases with the applied electric field above the critical field required for instability. The slope
of the perturbation energy increases with volume fraction. The critical electric field is defined
as the field in which the perturbation energy begins to increase from its base value. The base
perturbation value generally increases with volume fraction because of secondary scattering
from non-fluorescent particles.

The colloidal instabilities studied here have smaller exponential growth rates due to
the decreased mobility of the charge-carrying species (i.e. the particles), such that
no growth in the axial direction is observed for Q= 100 μL hr−1 over the region of
interest. For this reason, averaging the scalar perturbation energies in the streamwise
direction reduces noise in the measurement of the maximum scalar perturbations in
the flow.

This critical field definition is distinct from our previous definition that is defined
as the field in which the magnitude of the area-averaged perturbation energy reaches
a value twice that of the base state (see Posner & Santiago 2006). We showed that
this arbitrary definition for the critical field is consistent with a change from a zero
exponential spatial growth rate to a non-zero one. Our previous definition works well
for flows with ionic concentration gradients in which the change in the area-averaged
perturbation increases with the nearly infinite slope at the critical field. However,
this previous definition for the critical field does not work for suspension instabilities
studied here in which the perturbation energy can vary with the electric field for stable
base state flows, and there is a gradual increase in the perturbation energy at the
critical field. Our current definition is more appropriate for flows with varying base
state perturbation energies and can also be applied to the previous work, resulting
in consistent results. Figure 10 shows the maximum averaged scalar perturbation
energy profiles for φ = 0.005, 0.008, 0.011, 0.018 and 0.025 at a constant flow rate
Q=100 μL hr−1.

The base state (low electric field) perturbation energy generally increases with
volume fraction. We attribute this variation in base perturbation energies to secondary
scattering of non-fluorescent particles and variations in the fluorescent intensity
distribution in the particle stream. This effect is independent of the applied field
because it is observed even without an applied field. The critical electric field is
determined using the method described above and denoted by dashed the lines in
figure 10.
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Figure 11. Plot of the variation of critical electric field required for the onset of EKIs as
function of the particle volume fraction φ. The circles in figure 11 indicate experimental
results. The solid line and the dashed lines respectively indicate the scaling analysis of (4.26)
including and neglecting (with β = 0) the effects of the permittivity ratio β . The critical field
asymptotes to E ∼ 300 V cm−1 for large volume fractions. The critical electric field increases
as volume fraction approaches zero. The scaling analysis accounts for modifications in the
electrical conductivity and permittivity due to suspension volume fraction. Here we set the
critical Rayleigh number value to Rae,crit = 1.8 × 105 and 0.65 × 105 to obtain the solid and
dashed lines respectively.

Our methodology for determining the critical electric field is independent of the
base state perturbation energy and results in consistent and reproducible results. We
have repeated every experimental data point in figure 11 at least two times and found
the critical field to always lie between +/−13.3 V cm−1, which is the minimum step
size used for increasing the electric field in our experiments. This variation is smaller
than the height of the symbols used in figure 11 which represents approximately
50 V cm−1. The uncertainty in the electric field is approximately 3.3 V cm−1.

The critical electric fields extracted from figure 10 are plotted as functions of the
volume fraction denoted by open circles in figure 11. The solid and dashed lines are
obtained from the scaling analysis presented in § 4. The electric Rayleigh number
expression as a function of the experimental parameters and the applied electric field
is represented by (4.26). From (4.26), we determine the critical electric field by setting
the Rayleigh number equal to the critical value, Rae =Rae,crit , setting the electric field
equal to the critical value, Ea =Ec, in (4.26) and isolating Ec. The relation for the
critical electric field Ec is simply obtained from (4.26) as

Ec =

√√√√√√
kT Rae,crit

6πad2εm

[(
γ − 1

γ + 1

)2

−
(

1 − β

2

)] . (6.4)

This formulation describes the critical electric field as a function of the fluid
properties, particle radius, channel depth, electrical conductivity and permittivity
gradients and the critical Rayleigh number. This scaling relation does not predict the
Rayleigh number but simply describes the dependence of the critical electric field on
the known parameters of the system (a, d, ε, γ , β , T) and the critical electric Rayleigh
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number. The conductivity ratio γ , described by (6.1), is obtained from a linear fit of all
the experimental data points for the electrical conductivity variation of suspensions
with volume fraction of particles in 0.1 mM phosphate buffer. The permittivity ratio
β as a function of volume fraction is calculated using Carrique’s (2003a) model. We
have chosen this model because it takes into account the interparticle interactions and
overlapping EDL effects of concentrated particle suspensions and precisely predicts
the suspension dielectric constant variation as a function of both volume fraction
and frequency. The model also concurs well with available and existing experimental
measurements of dielectric constants of suspensions found in the colloids literature.
The permittivity as a function of the volume fraction for several buffer concentrations
and zeta potentials is given in the Appendix.

Figure 11 shows good qualitative agreement between the trends predicted by the
scaling relation and the quantitative experimental data. The solid line and the dashed
lines respectively show the scaling analysis of (6.4), including and neglecting (β = 0)
the effects of the permittivity ratio β . We obtain the electric Rayleigh number at
which the flow becomes unstable by fitting the scaling analysis with the experimental
data and setting the critical electric Rayleigh number to Rae,crit = 1.8 × 105 and
0.65 × 105 to obtain the solid and the dashed lines respectively. It is to be noted here
that the electric Rayleigh number value is an arbitrary quantity that describes the
onset of the instability under the electric Rayleigh number defined here. The goal
of the scaling analysis and the electric Rayleigh number is to provide qualitative
prediction of the variation of the critical electric field with the particle volume
fraction. At large volume fractions, the critical electric field asymptotes at about
Ec = 300 V cm−1. For particle volume fractions, φ > 0.008, the charge accumulation
at the interface due to conductivity gradients saturates, and the critical electric field
required for instability reaches an asymptote. At volume fractions φ less than 0.008 the
critical field increases rapidly due to the relatively small conductivity and permittivity
gradients. Experiments with volume fractions, φ < 0.002, were also carried out, but the
critical electric fields in those experiments required large electric fields that resulted
in net EK motion of the particles in the upstream direction, and hence the critical
field could not be determined.

Figure 11 suggests that the permittivity plays a significant role in the instability
mechanism. To examine this, we plot the ratio of the conductivity (γ − 1/γ + 1)2 and
permittivity gradients (1-β)/2 that play a role in the electric Rayleigh number equation
(4.26) in figure 12. This ratio describes the relative importance of the conductivity and
permittivity gradients in driving the electroviscous velocity that results in unstable
flow. In 0.1 mM phosphate buffer, the conductivity contributes nearly six times more
than the permittivity at φ < 0.01. At larger volume fractions of the order of φ ∼ 0.1,
the permittivity contributes nearly a third of the net electroviscous effects. As the
ionic strength of the buffers increases (increasing κa) the slope of the conductivity
versus the volume fraction curve decreases as shown in figure 4. In 10 mM buffer, the
surface conductance of the particles is small compared to buffer conductance (low
Du), such that the conductivity is independent of the suspension volume fraction,
resulting in ratio much less than unity for φ < 0.04. This suggests that, under some
conditions, the permittivity gradients can be the main driving force of the instability.
At a volume fraction of φ =0.005 the permittivity effects in the 0.1 mM case are only
15 % of the conductivity, in contrast to the 10 mM case in which the permittivity
effects are 10 times as large as the conductivity effects. At a volume fraction of φ = 0.1
the permittivity effects in the 0.1 mM case account for about 33 % of the conductivity,
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Figure 12. Plot of the relative effects of the conductivity and permittivity gradients as
functions of volume fraction. This ratio describes the relative importance of the conductivity
and permittivity gradients in driving the electroviscous velocity that results in unstable flow.
The solid line is for 500 nm polystyrene particles dispersed in 0.1 mM phosphate buffer at pH
6. The dashed line is for the same particle in 10 mM buffer at pH 7. The plot indicates the
relative contributions of the conductivity and permittivity gradients to the electric Rayleigh
number. In 0.1 mM phosphate buffer, the conductivity contributes nearly six times more
than the permittivity for φ < 0.01. At larger volume fractions of the order of φ ∼ 0.1, the
permittivity contributes nearly a third of the electroviscous velocity. In 10 mM buffer, the
surface conductance of the particles is small compared to buffer conductance, resulting in
a ratio much less than unity for φ < 0.04. This suggests that, under some conditions, the
permittivity gradients can be the main driving force of the instability.

in contrast to the 10 mM case in which the permittivity effects are only 10 % of the
conductivity effects.

This decrease in the permittivity effects at higher concentrations of particles in a
10 mM buffer solution is due to a less pronounced change in the static permittivity
at these higher volume fractions (see the Appendix for the permittivity values). The
permittivity and its role in EKIs is a function of volume fraction φ, zeta potential of
particles ζp , the EK radius κa and the permittivity of the particles εp and the medium
εm. It is to be noted here that the conditions encountered in our experiments do
not represent a generic condition for all electrolytes, and particles. Alternate models
or experimental data can be used to determine the permittivity ratio β , and the
electric Rayleigh number scaling in (4.26) can be used as generic scaling relation for
determining the conditions under which the flow will become unstable.

In our previous work, we showed that EKIs with ionic conductivity gradients
develop when the electric Rayleigh number reaches 205. Here, we observe a much
larger critical Rayleigh number. The high Rae is due to low diffusive coefficients for the
particles. Here the particles have a Stokes–Einstein diffusivity of 8.58 × 10−13 m2 s−1,
where ions have a diffusivity that is four orders of magnitude larger. If we use the
diffusivity of the ions namely sodium and hypophosphate ions, in the flow we calculate
an electric Rayleigh number of around 250. Although this value is much closer to
our previous work (see Posner & Santiago 2006), it does not accurately represent
the diffusivity of the conductivity and permittivity fields. Here the conductivity and
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Figure 13. Plot of the maximum, x-area-averaged scalar perturbation energies for φ = 0.011
and pressure-driven flow rates Q= 50, 100, 150 and 200 μL hr−1. The dashed line shows the
perceived critical electric field for each flow rate. The inset shows a plot of the measured
critical electric field as a function of the pressure-driven flow rate. The measured critical field
increases with the pressure-driven flow rate. The pressure-driven flow advects the instability
perturbations downstream which results in a perceived stabilizing effect.

permittivity fields are coupled with the particles, and thus the particle diffusivity is
more appropriate than the ionic diffusivity.

6.6. Influence of pressure-driven flows on EKIs

Experiments were also performed to ascertain the effect of increasing the imposed
pressure-driven flow rate Q. Figure 13 shows a plot of the maximum x-area-averaged
scalar perturbation energy profiles for φ = 0.011 and Q= 50, 100, 150 and 200 μL hr−1.
The inset of figure 13 shows the critical electric field as a function of the flow rate as
determined by the method described in the previous section. The inset shows that the
field required to register as an instability increases nearly linearly with the imposed
pressure-driven flow rate Q. We attribute this measured increase in the critical field
to the increase in the advective velocity. The temporal growth rate of the instabilities
is a function of the applied field and should not depend on the pressure-driven flow
rate. However, as we increase the flow rate, the structures are advected downstream
faster and have less time to grow which results in a reduction in the spatial growth
rate and scalar perturbation energy at the fixed location at which they are measured.
The increased flow rate is a perceived stabilizing effect. It follows that magnitudes
of electric fields higher than that of the actual critical electric field are generally
required in order to observe detectable perturbations in the system. For this reason,
the most accurate measurements of the critical electric field will be obtained with the
lowest possible velocity. In the current work, it is not possible to reduce the flow rate
below 50 μL hr−1 because the net EK velocity will then exceed the pressure-driven
flow velocity, resulting in no particles in the east channel. Note that it is possible to
observe the onset of instability at the critical electric field, Ec, at various flow rates
provided the observation window is moved downstream. However, we were limited
in our ability to move the observation window further downstream, as the current
location of the observation window in all our experiments is at a distance of 5.5 mm
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downstream from the Y-intersection along the east channel, and the east channel is
only 10 mm.

7. Conclusions
EKIs can occur in flows with colloidal suspensions when there is a coupling of

applied electric fields with gradients in particle volume fraction. Particles in suspension
can modify the bulk solution electrical conductivity and permittivity. Electric fields
couple with the gradients in conductivity and permittivity to generate electric body
forces that can render the flow unstable under certain conditions. The flow becomes
unstable when the electroviscous stretching and folding of the conductivity and
permittivity interfaces exceed the dissipative effects of viscous forces and particle
diffusion.

We have presented an experimental investigation of EKIs developed in non-dilute
colloidal suspensions. The conductivity and permittivity gradients were generated at
the intersection of a Y-shaped PDMS microchannel. We have explored the variations
in the critical electric field required for flow instability as a function of colloidal
volume fraction and pressure-driven flow rates. The variations in the effective electrical
conductivity of a suspension and the average electrophoretic mobility with volume
fraction of particles were determined experimentally. We have shown that EKIs in
non-dilute colloidal suspensions are characterized by wavelike coherent structures
which grow in magnitude as they advect downstream. We used quantitative scalar
imaging and showed that the critical electric field required for instability depends
upon volume fraction of particles in the suspension. We developed scaling relations
for the electric body forces in the bulk fluid as functions of both the conductivity
and permittivity gradients in the flow and showed that the flow becomes unstable at
a critical electric Rayleigh number Rae = 1.8 × 105.

EKIs in colloidal suspensions may be important in the EK manipulations of
non-dilute colloidal systems such as electrorheological flows, field-induced pattern
formations in colloidal dispersions, field-induced layering of colloidal crystals films
and electronic chip cooling as well as a host of on-chip EK manipulations of
biomolecules for μTAS applications.
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Appendix. Suspension permittivity as a function
of volume fraction

The permittivity of a colloidal suspension generally varies with the particle radius,
permittivity, zeta potential and volume fraction, as well as the solution concentration
(Debye layer thickness). Here we use Carrique’s (2003a) model to estimate the
permittivity of our 500 nm polystyrene suspensions in various ionic strength
phosphate buffers. Table 2 lists the permittivity of polystyrene suspensions for six
volume fractions and DI water for background buffer solutions of phosphate buffer.
The zeta potential values are measured using dynamic light scattering (DLS) at
infinite dilution.
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Buffer Zeta ζp Volume fraction of particles φ

0.001% 0.01% 0.1% 1% 3% 10%
DI water −110 mV 78.58 78.83 80.88 92.66 102.96 101.90
0.1 mM −80 mV 78.59 78.96 82.19 105.09 135.28 165.15
1 mM −52 mV 78.57 78.69 79.82 87.67 97.51 103.86
10 mM −33 mV 78.55 78.59 78.90 80.86 82.70 79.94
100 mM −10 mV 78.55 78.54 78.48 77.73 75.88 68.88

Table 2. The permittivity of 500 nm polystyrene suspension in various phosphate buffer
solutions. The zeta potentials of the particles ζp are measured at infinite dilution by DLS.
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